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Summary. A numerical solution to the parallel processes model for combined 
reptation and constraint release in polymer melts is presented. The discrete chain 
solution to the problem exhibits an exponent of 3 in the molecular weight 
dependence of the viscosity, just as in the strict reptation case; the magnitude of 
the viscosity is overestimated and no crossover to reptation is observed, as in 
Graessley's independent processes model. It is shown that linear combinations of 
reptation and constraint release, as modeled here, cannot describe the viscosity 
results observed experimentally. 
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1, Introduction 

The entanglement phenomenon is one of the central problems in the dynamics of 
polymer liquids. In the past two decades considerable effort has been spent in 
developing theories based on the reptation hypothesis, that is, the idea that an 
entangled chain is constrained by neighboring chains to move predominantly 
along its own contour, as though it were trapped in a tube [1-3]. In a recent 
publication, both reptation-based and non-reptation models were reviewed and a 
thorough comparison with experimental data and computer simulations was 
conducted [4]. It was concluded that reptation models could provide an excellent 
overall description of polymer melt dynamics. However, some difficulties remain. 
An example of great interest is the molecular weight dependence of the zero 
shear rate viscosity. The reptation model both overestimates the magnitude and 
predicts a weaker molecular weight dependence: specifically, qre ~ M 3  and 
rle x ~ M 3"4 and t/~« > qe«, where t/r« and qex are the predicted and experimental 
viscosities, respectively. The original theory of reptation (RE) was intended as a 
description of the dynamics of a single chain surrounded by a matrix of fixed 
obstacles [ 1]. In a polymer liquid, however, neighboring chains are mobile and as 
a result pure RE is presumed to provide a lower bound to the rates of chain 
diffusion and relaxation [5]. This matrix mobility can also make a significant 
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Fig. 1. a Schematic diagram of a 
2-dimensional "slice" cut across the plane of 
a test chain. The black filled circles represent 
neighboring or matrix chains that are coming 
in and out of the plane of the test chain 
represented by the black line. b The unfilled 
circle represents a matrix chain end reptating 
past the test chain, releasing a eonstraint and 
allowing the test chain to make a lateral 
change in configuration, e Schematic of the 
new configuration of the test chain, the 
unfilled circle or chain end now replaced by 
a black one or matrix chain 

contribution in polydisperse systems, and especially in binary blends of 
monodisperse polymers with widely separated molecular weights [4, 6-10]. 

Constraint release (CR) is an extension of the strict RE hypothesis to 
polymer liquids, which recognizes that the matrix constraining a chain to 
longitudinal motion is also made up of chains that are reptating [4, 5, 11, 12]. 
When a matrix chain end reptates past the test chain, a constraint is released and 
the test chain gains some lateral freedom (see Fig. 1). A combination of  CR with 
RE was developed by Graessley, who made the assumption that the two 
mechanisms act independently [5]. For  example, if GcR(t) and GRE(t) are the 
stress relaxation moduli for the pure CR and RE processes, respectively, G(t) can 
be expressed as a simple product of both functions; thus, this model will be 
referred to as the independent processes model (IPM). This assumption has been 
utilized by other authors, for example Rubinstein and Colby, and it is of  interest 
to investigate its validity [8]. 

In general G(t) is related to the orientation correlation function S(i,j; t), 
which gives the correlation between the orientations of subchain units i and j at 
time t. From this quantity we can obtain the subchain orientation autocorrela- 
tion function, S(i, i; t) (also called the orientation function) by setting i = j  [2]. 
Watanabe and TirreU have proposed the so-called configuration-dependent 
constraint release model, CDCR, as an alternative to the IPM [13]. This model 
analyzes the problem through the orientation function, assuming that both CR 
and RE processes are occurring in parallel in the time evolution equation for 
S(i, j ,  0; this type of model will be referred to as the parallel processes model 
(PPM). It should be noted that neither the IPM nor the PPM take contour 
length fluctuations (or any other additional postulated relaxation mechanisms) 
into account [4, 5, 14]. 

Generally, linear polymers can be modeled as chains of N subunits, where N 
is proportional to the molecular weight of the polymer [4]. In this case i a n d j  are 
discrete variables and we will refer to this level of description as the "discrete 
chain model". It is also common practice to consider the large N limit, where i 
and j can be taken to be continuous variables. This level of description will be 



Simultaneous reptation and constraint release in polymer melts 385 

referred to as the "continuum limit approximation". In models for entangled 
polymers, N is often taken as M/Me, where Me is the molecular weight between 
entanglements (for example, as determined from the plateau modulus) [15]. As a 
result, the experimentally accessible region extends only to relatively low values 
of N, on the order of 102, and the validity of the continuum limit approximation 
taust be examined. Watanabe and Tirrell solved the PPM problem analytically in 
the continuum limit by approximating S(i, i; t) as a linear combination of the 
diagonal patts of the Rouse eigenfunctions, the so-called diagonal dominance 
approximation (DDA). In general, PPM predictions were found to be in better 
agreement with experiment than IPM predictions for a variety of viscoelastic 
properties at this level of description. In this paper we-rederive the PPM and 
extend the previous work by solving the problem numerically, both for the 
discrete chain and in the continuum limit approximation. We compare both 
results and also compare the PPM to the IPM predictions and to experiment. 

2. Theory 

Definitions and assumptions 

We adopt a chain consisting of N freely-jointed Gaussian subchains connecting 
N + 1 beads. These subchains behave as entropic springs that follow Hooke's 
law and have zero rest length, so that: 

fi = k"i (1) 

where f is the tension in the /th subchain, ri its end-to-end vector, and 
k = 3kB T/r 2 is the subchain force constant, where k B is Boltzmann's constant, T 
is the temperature and r e is the equilibrium mean square end-to-end length of a 
subchain. The equilibrium distribution function for the chain is then: 

~/eq"~exp( - k ~ r ~ / 2 k B T  (2) 

The stress a(t) • n across a plane normal to the n-direction in a relaxing polymer 
is simply the sum of the contributions from all the chain segments crossing a unit 
area of that plane: 

N N 

a(t) = 0 ~ ( f re )  +p l  = ek ~. (rere) +p l  (3) 
i = l  i = 1  

where O = c/N is the number of chains per unit volume, c the number of 
subchains per unit volume, p the pressure arising from van der Waals interac- 
tions and kinetic terms, and I the unit tensor. The average ( . . . )  is to be taken 
with respect to the non-equilibrium distribution ~U(r~ . . . .  ru, t) prevailing at time 
t. The surrounding chains provide an environment which allows for both RE and 
CR, and is assumed to be incompressible and to deform affinely. Our treatment 
will be limited to linear viscoelastic behavior only. For a shear deformation in 
the x-y plane, the stress is described by the following quantity: 

N N 

a =-axy = ok ~ (xiYi)= ~k ~ Si.i(t) (4) 
i = 1  i = 1  

where S~,i is the discrete form of the orientation function. The chain is assumed 
to be initially in equilibrium, with each subchain in its unstressed configuration 
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ri, o. At t = 0 a sudden shear strain 7 is imposed on the material and xi becomes 
X~o + 7Y,o. The initial stress is therefore: 

N 
O'xy(0 ) = kT(c /N) y' (y2o ) = kycr2/3 = kB Tc7 (5) 

i=1  

The time evolution of the stress per unit strain defines the relaxation modulus 
G(t). As is usual in describing the long-time dynamics of entangled polymer 
liquids we identify G(0) with the plateau modulus: 

G( O) = kB Tc (6) 

In fact, we expect the initial response to be G(O) = «kb Tc, where « is somewhat 
less than 1 (it will be taken to be 4/5, [2]) because of relatively rapid initial 
relaxation by processes other than RE or CR, such as chain contraction within 
the tube. The long-time behavior of G(t) determines the zero shear viscosity by: 

rl = G(t) dt (7) 
0 

where 
N 

G(t) = axy/Y (~k/7) ~ S~«(t) (8) 
i = l  

and the recoverable compliance by: 

f0 ~ Je = 11-2 tG( t )  dt ( 9 )  

We therefore seek to evaluate the average quantity S~,i(t). 
The time evolution of the N-segment distribution function is governed by an 

N-dimensional Smoluchowski equation, with anisotropic, orientation-dependent 
segmental diffusion tensors [3]. Rather than handle this intractable problem 
directly, we shall write separate equations for RE and CR contributions to 
~S(i,j; t)/Ot, and then sum these to obtain the total rate of change in S(i,j; t) 
when both mechanisms operate in parallel. In general the resulting G(t) will not 
be a simple product of RE and CR terms as in the IPM case. 

RE term 

We derive this term by making the strict reptation assumption, i.e., by forcing 
each subchain to inherit the position of the preceding or following adjacent 
subchain with equal probability. As a result (xiy  j )  in a single reptation step 
(Ai = Aj = 1) can become either (xi+ xYs+ 1) or (x;_ ~yj_ 1), i.e., the change in 
(x iy j )  after an elemental reptative jump can be either equal to 
( x e + l y s + l ) - ( x i y j )  or ( x i _ l y j _ l ) - ( x i y j ) .  With this process in mind we 
write the following difference equation: 

O&.s/Ot = (VRE/2)(Si+ ',S+' + Si-1,j-1 -- 2&O) (10) 

where VRZ is the jumping frequency for chain motion inside the tube associated 
with the RE process: 

VRE = Vo/N (11) 
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with vo = 2kBT/r2(o being the subchain jumping frequency, and (o its friction 
coefficient. For large N, i and j may be treated as continuum variables, Sij(t) 
becornes S(i,j; t), and Eq. (10) may be rewritten as: 

OS(i,j; t)/Ot = (VRE/2)((O2/Oi 2) + ( 2ô2/Oi Oj) + (O2/Oj2))S(i,j; t) (12) 

CR term 

As stated in the introduction, in the strict reptation picture a chain is surrounded 
by other neighboring chains which constrain it to move solely along its own 
contour. The CR hypothesis assumes that vicinal chains are also reptating, and 
for times comparable to the longest relaxation time of the RE process can move 
out of the way, thereby adding lateral mobility to the test chain. We model CR 
as a purely isotropic process that can be described by Rouse-like dynamics. It is 
important to understand that even though we use Rouse dynamics the physical 
process being described is not the Rouse process familiar from dilute solution 
dynamics; in the true Rouse process the "jump frequency" is independent of N 
but in contrast the CR jümp frequency scales as N -3. The CR diffusion equation 
derived from the Smoluchowski equation is 

O~({rn}'t)Ôt = n=l~-~ t~~ ° m=l  ~" ~ I k B T  t~g*(~m} ' t )+fm.T t ( { rm} , t ) l  (13) 

where An,ù is the Rouse matrix: 

I i i f n = m  A~m= - i f n = m + l  o r m - 1  (14) 

otherwise 

and ( =  ~oN 3 is the friction factor associated with the CR process, the N ~ 
dependence reflecting the strict reptation result for the longest relaxation time. 
Multiplying both sides of the Smoluchowski equation by x~yj and by d3r, and 
averaging over all configuration space, gives: 

aSi, j / ~ t  = (1,'CR/2)(Si, j +1 -~- Si, j - 1  -~ Si +1 ,j ~- S i -  1 ,j - 4S,.j) (15) 

(i.e., for each e R  jump either ai  or aj  is _+ 1). In the continuum limit this 
equation for the pure e R  process becomes: 

aS(i,j; t)/& = (VcR/2)((a2/ai  2) q-(O2/aj2))S(i,j; t) (16) 

where 

VCR = 6kB T/r2( = 6kB T/r2(o N3 = 3VRE/N 2 = 3Vo/N 3 (17) 

is the CR jumping frequency. 

P P M  model 

The right hand side of the difference equation for the PPM is obtained by adding 
the right hand sides of Eqs. (10) and (16), so that: 

?&j/Ot = (vcR/2)(S,j+ I + Si, j_  , + Si+ 1,j "~- Si-1,j  -- 4Sij) 

-}- (VRE/2)(S/+ 1,j+l -}- S t -  1,j-1 -- 2S/,j) (18) 
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We now introduce an effective jump frequency «(N) such that: 

VCR/2 = e(N) "5 = 3vo/N 3 (19) 

VRE/2 = «(N)" (1 -- 5) = Vo/2N (20) 

where 5 is the constraint release factor (0 < 5 < 1). From Eqs. (11) and (17): 

v0 ( 3 + N 2) 
«(N) 2N 3 (21) 

and 

N = [3(1 - 5)/el °s (22) 

Note that there exists a unique correspondence between N and 5; N = 1 
(5 = 0.75) is taken to correspond to Me, since this molecular weight is the one 
associated with the appearance of the plateau in G(t). As N increases 5 tends to 
zero, and Eq. (18) tends to the strict RE difference equation. By introducing the 
dimensionless time variable z = o~(N)t Eq. (18) is transformed into 

OSi, j/~Œ = 5(Si,j+ 1 ~- Si, j -  1 ~ Si+ 1,j -~ S i -  i,j - 4Si , j )  

-~- (1  - -  g)(Si+ 1 , j + l  + S i -  l , j - i  - 2Sij) ( 2 3 )  

the discrete form of the time evolution equation for the PPM model. Equation 
(23) clearly shows the physical significance of 5, i.e., it is a measure of the 
contribution of constraint release for a given N. As discussed by Watanabe and 
Tirrell, the continuum limit of the equation for the PPM process becomes (from 
Eq. (18)): 

OS(i,j; t)/Ot = {(VCR/2)[(O2/Oi 2) -q-(Ô2/Oj2)] 

q- (a~RE/2)[(~2/~i 2) -'~ 2(a2/oiaj) q- (~2/oj2)]}s(i,j; t) (24) 

The PPM model applies to the post-entanglement regime, where the experi- 
mental range is typically 1 < N < 200; for this reason it is necessary to develop 
solutions for the discrete version of the model at relatively low N, i.e., to use Eq. 
(23) rather than Eq. (24), with i and j varying from 0 to N + 1. The formal 
addition of subchains 0 and N + 1 is a convenient way of  including the absence 
of tension felt by the end subchains without writing separate equations for them; 
the conditions: 

S0o = SN+ 1o = &,o = &,N+, = 0 (25) 

give the correct equations for subchains 1 and N, and also indicate that these 
subchains have no preferred orientation. The required initial conditions are: 

S,,j-(0) = (4/5)7 (y,-2o) = 4])r2aij/15 (26) 

where 6 o. is the Kronecker delta. Equation (26) represents the random walk 
configuration of  the chain at t = 0. Note that even though according to Eq. (5) 
only the &.~(t) are required to evaluate the stress, the full two-dimensional 
problem must be solved to obtain them. Finally, in order to compare this model 
with Graessley's IPM it is necessary to use the same parameters used by 
Graessley which are caleulated from the Orwoll-Stockmayer random bond flip 
mechanism, as described in the Appendix. 
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3. Results 

Continuum limit approximation 

The quantity of interest is the subchain orientation correlation function, S(i, j; t), 
where i and j are continuous subchain index variables that identify positions 
along the chain and tun from 1 to N; its time evolution is given by Eq. (24) with 
the initial conditions: 

S(i, j; O) = 47r26(i - j ) / 1 5  (28) 

where 6 ( i - j )  is the Dirac delta function, and boundary conditions: 

S(0,j ;  t) = S(N,j;  t) = S(i, 0; t) = S(i, N; t) = 0 (29) 

Watanabe and Tirrell solved the PPM in the continuum limit, treating the time 
evolution of S(i, i; t) as occurring through a sequence of alternating RE and CR 
steps, using approximate expressions for S(i, i; t) during the CR phases [13]. 
Here a numerical approach to the continuum problem (finite differences) has 
been chosen instead, starting at the S(i, j; t) level. Equation (24) is replaced by a 
difference equation for Sm,ù(t), similar to Eq. (23) with a P by P grid of mesh 
length Am = An = N / P  < 1, where P is made sufficiently large to provide conver- 
gence and is kept constant and therefore independent of N [16] 

OSm,ù/& =e(Sm,ù+, + S~,ù_, + Sm+,ù + S m _ , ù  - 4Sm,) 

+ (1 - ~)(Sm + l , n + l  + Sm-,,n--I - -  2Sm,n) (23') 

where the dimensionless time variable in Eq. (23) is now z = ~(N)(N/P)2t. When 
P = N the difference equation becomes identical with Eq. (23); however, to 
attain the continuum limit P must be kept large compared to N. It should be 
noted that in the finite differences scheme Eqs. (28) and (29) become: 

Sm,ù(O) = (4N/15P)Tr26mù 0 < m, n < P (28') 

so that the initial stress remains independent of P, and 

S o , = S N + , = S m , o = S m , N + , = O  O < m , n < P  (29') 

respectively, where division by P ensures that the sum of diagonal elements at 
time zero is (4/15)NTr 2. 

The numerical results differ significantly from Watanabe and Tirrell's solu- 
tion. As an example, Fig. 2 compares both the Watanabe-Tirrell and the 
numerical continuum limit approximation predictions for t/ with the strict RE 
predictions as well as with experiment for narrow M distribution polystyrene at 
167°C [ 17]. As the molecular weight increases, there is a convergence to the strict 
RE results in Watanabe and Tirrell's calculations. This can be interpreted to 
mean that at higher N the frequency of release of a constraint is so low 
compared to the reptative jump frequency that RE is the only contributing 
relaxational possibility for the chain. However, no evidence of convergence to 
pure RE is observed for the numerical calculations in the range of N examined. 
It is interesting to note that in the region of interest the molecular weight 
exponent of the viscosity is a function of molecular weight and has a value 
greater than 3, in both cases. This exponent can be reasonably well approxi- 
mated by 3.6, close to the value found experimentally, for Watanabe and Tirrell's 
predictions but the numerical predictions exhibit a value of approximately 4.1. 
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Finally, while the numerical results underestimate the magni tude o f  the experi- 
mental  data  Watanabe  and Tirrell 's predictions do the opposite, as pointed out  
by these authors  [13]. The differences between the two cont inuum results are 
presumably attr ibutable to the diagonal dominance  approximat ion and an initial 
condit ion (different f rom Eq. (28)): 

S ( i , j ; O )  = ((4/1~)~r2 forf°r I eil - J l  - j [  <<11 (30) 

used by Watanabe  and Tirrell. Some preliminary calculations o f  the solution to 
Eq. (24) using the initial condit ion o f  Eq. (30) have yielded results different f rom 
the con t inuum limit results both  with the diagonal dominance approximat ion  
and the numerical solution presented here [18]. I f  Eq. (23) is considered as a 
purely mathematical  problem then e can be allowed t o  go to zero and the strict 
RE  result is recovered, regardless o f  the value o f  P used. Of  course, this result 
has no physical meaning in the context o f  the PPM because the convergence to 
strict RE  will not  be achieved before e becomes so small that  N will be greater 
than P and application o f  the cont inuum limit approximat ion is no longer 
appropr ia te  since the P ~ N requirement has been violated. 

The discrete case 

As mentioned earlier, N = M / M e ,  and experimentally N extends f rom 1 to 200, 
thus warrant ing an examination o f  the discrete result. First, however, it is 

Fig. 2. Molecular weight dependence of the viscosity. Comparison of the strict RE prediction (from 
the solution of Eq. (10)) (thick line), Watanabe and Tirrell's continuum limit results (open circles), and 
the numerical continuum limit results (open squares) with PS of narrow molecular weight distribution 
experimental data (filled squares), taken from Ref. [17] 

Fig. 3. Time dependence of G(t)/G(O) as predicted by the continuum Rouse model showing the 
intermediate t -1/2 scaling 

Fig. 4. Time dependence of G(t)/G(O) as predicted by the discrete Rouse model for N = 5 showing 
no evidence of an intermediate t - 1/2 scaling 

Fig. 5. Molecular weight dependence of the viscosity. Comparison of the strict RE prediction (from 
the solution of Eq. (10)) (thick line) and the numerical discrete PPM results (open squares) with PS 
of narrow molecular weight distribution experimental data (filled squares), taken from Ref. [17] 

Fig. 6. Projection of S(i,j; z) or "mass distribution" function (in the diffusion equation analogy case) 
onto the i-j plane at z = 0. As time evolves the initial mass distribution (which projects onto the i = j  
diagonal) is depleted and the "mass", in this figure the projection of its distribution, spreads within 
the square and is absorbed if it reaches the boundaries 

Fig. 7. Molecular weight dependence of the viscosity. Comparison of the numerical discrete PPM 
results (open squares) with Graessley's IPM results (crosses) 

Fig. 8. Projection of S(x, y; z) or "mass distribution" function (in the diffusion equation analogy case) 
onto the x-y plane at z = 0. As time evolves the initial mass distribution (which projects onto the y = 0 
line) is depleted and the "mass", in this figure the projection of its distribution, spreads within the 
diamond (resulting from the change of variables) and is absorbed if it reaches the boundaries 

Fig. 9. Representation of the Fig. 8 case with new boundaries necessary to generate an IPM solution 
to the problem 
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instructive to examine the differences between the continuum limit approxima- 
tion and the discrete sotution for a simpler model, the Rouse model [3, 4, 19]. 
This model is of relevance to this work because it is mathematically identical 
to the CR model, i.e., it is described by the same differential equation and 
initial and boundary conditions. One of the best known results of the continuum 
limit approximation of the Rouse model is the t-1/2 dependence of the relax- 
ation modulus, as illustrated in Fig. 3. However, when the discrete problem 
is solved for a Rouse chain of 5 subchains there is no evidence of such time 
scaling, as shown in Fig. 4, since the continuum view is not applicable to short 
chains. 

We now proceed to examine the solution to Eqs. (23, 25 and 26). The results 
for the molecular weight dependence of the viscosity are shown in Fig. 5, where 
we also show the strict RE result and compare to experiment. These results are 
significantly different from the continuum limit approximation results. Surpris- 
ingly, the viscosity exponent is 3, just as in the strict RE case, and the inclusion 
of the CR mechanism only affects the viscosity prefactor. As in the continuum 
limit (numerical solution) no convergence to strict RE is observed in the fange 
of N examined; however, the magnitude of the viscosity is overestimated. The 
differences between the continuum limit and discrete numerical PPM predictions 
are due to the fact that in the former each subchain is being divided into P/N 
subunits, in effect providing non-existent additional internal mechanisms for 
relaxation. 

To solve Eqs. (23, 25, and 26), which are stochastic difference equations, we 
represent the spatial part of the problem as an N by N numerical grid; in this 
case the grid does have physical significance, because its size will directly depend 
on the molecular weight of the chain being modeled (P = N). These equations 
have the appearance of anisotropic diffusion equations, where the "mass distri- 
bution" (or correlation function in this case) at any time is a distribution over 
the i-j plane, as illustrated in Fig. 6. It is important to remember, however, that 
no physical diffusion process is involved, and that the diffusion-like terms a r e a  
result of the Hookean interactions between adjacent beads. Nevertheless, we can 
use this diffusion analogy to describe the relaxation mechanism of the PPM 
model. At time t = 0 the "diffusing material" is distributed along the diagonal 
i = j ,  with absorbing boundaries at i o r j  equal to 0 or N ÷ 1. If the system can 
only relax its orientation via RE, "mass" can only be lost at either end of the 
diagonal. On the other hand, if the system can also relax via CR, the "mass" can 
"diffuse" at right angles to its original distribution and can ultimately be 
absorbed at any point on the boundary of the i-j plane. These two competing 
relaxation mechanisms may be called longitudinal and transverse respectively. 
For a chain of N = 4, the efficiency of orientation relaxation of both mechanisms 
is similar because the system has two end beads and two internal beads. As N 
becomes greater, the transverse or CR mechanism becomes more effective 
(relative to the longitudinal or RE mechanism) at relaxing stress because the 
fraction of internal subunits increases, in other words, the possibilities per unit 
time for relaxation along the diagonal increase as N increases whereas the 
number of possibilities at the ends remain fixed. However, as N becomes larger 
the frequency of release of a constraint becomes lower and ~ becomes smaller, 
thereby limiting the effectiveness of the transverse mechanism and allowing the 
longitudinal RE relaxation mechanism to dominate. The balancing of these two 
effects is sufficient to impede a convergence to RE in the region of N examined, 
even though the CR process weighting is being reduced. Physically the discrete 
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results can be interpreted in the following way: chains can relax via RE only at 
the ends and via CR anywhere along their own contour, so that as N becomes 
larger the frequency of release of a constraint decreases but the contour of the 
chain increases providing more possibilities along the chain for a eonstraint to be 
released. As N ~ ~ and e ~ 0 it is clear from Eq. (23) that the strict RE result 
must be recovered; however, based on the numerical PPM results it is evident 
that this convergence is very slow, and not visible in the region of N examined. 

Figure 5 reveals orte of the weaknesses of the rigorous, discrete solution of 
the PPM namely that, since experimentally the viscosity has a stronger molecular 
weight dependence, the experimental and theoretical curves will cross each other 
and the model will underestimate the experimental data .at high M. 

Independent processes solution 

As explained in the introduction this model, due to Graessley, is based on the 
assumption that the relaxation modulus can be expressed as the simple product 
G(t)/G(O) = GcR(t)GRE(t) [5]. This assumption can be rationalized in the follow- 
ing way: the jump frequencies for the CR and RE processes scale as N -3 and 
N-1,  respectively, and thus the ratio of the characteristic frequencies for both 
processes scales as N 2 for the monodisperse case. Hence, at sufficiently high 
molecular weights the time scales of the processes are well separated. Figure 7 
shows a comparison between this model and the rigorous discrete result of the 
PPM. For the viscosity Graessley's model is clearly a very good approximation. 
It should be noted, however, that this is not true for all properties; for example 
the end-to-end vector correlation function, V ( t ) =  ( R ( t ) .  R(0)), where R(t) is 
the end-to-end veetor, predicted by the PPM model is in better agreement with 
experiment than Graessley's model, as discussed by Watanabe and Tirrell [13]. 
Calculation of V(t) does not require the use of DDA and therefore the differ- 
ences between the models, which a r e a  result of using the DDA approximation 
or different initial conditions, i.e., Eqs. (28) and (30), do not arise. 

In order to understand the agreement between Graessley's result and the 
rigorous discrete result, an independent processes solution is derived in the 
framework of reptation plus constraint release with Eqs. (24, 28, and 29) as the 
starting point. After a change of variables to 

= tVcR , y = 2-1/2(i - j )  and x = (2Ô)-1/2(i + j ) ,  (31) 

where/~ = 1 + 2VcR/VRz, Eq. (23) becomes: 

~3S(x, y, "r)/O'c = ~x 2 + S(x,  y, "r) (32) 

with 

S(x  = - y B  1/2) = S(x  = y~ 1/2) = S ( y  + x~ 1/2 = 2raN) 

= S( - -y  + x[3 ~/2 = 2~/2N) = 0 (33) 

as boundary conditions and 

S(x,  y, 0) = (2p) 1/2r26(21/2y)4/15 (34) 

as an initial condition. Figure 8 shows the transformation from the i-j plane to 
the x-y  plane, with the boundaries forming an elongated diamond shape and all 
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the "mass" distributed along y = 0. Now "mass" can "diffuse" out at x = 0 or 
x = fl-1/221/2N by reptation or perpendicular to y = 0 by CR. At short or 
intermediate times the vertices of the diamonds are not having any effect and the 
boundaries can be replaced by straight lines perpendicular to the x-axis. As 
illustrated in Fig. 9: 

S(x  = O) = S(x  = fi-'/22'/2N) = S ( y  = 2-a/2N) = S ( y  = - 2 - ' / 2 N )  = 0 (35) 

are the new boundary conditions. Under these conditions the problem becomes 
separable and the solution is a product of the solutions to the x and y parts of  
the problem, where the y part is a CR-like function and the x part is a RE-like 
function. Thus, we recover an IPM solution. The fact that both models give very 
similar results can be interpreted to mean that for times that are sutticiently long 
for the diffusing mass to "feel" the differences between the two kinds of 
boundaries, most of the initial mass distribution has been depleted. 

The recoverable compliance 

The product JeG(O) gives a measure of  the breadth of  the distribution of 
relaxation modes. The following table shows this product for different N as 
predicted by Graessley's model and the discrete PPM, with z = 3.5, and by the 
continuous PPM, with the DDA and z = 3.0. In all cases JeG(O) becomes 
independent of  N at high N; however, the continuous PPM with the DDA 
converges to the strict RE prediction of 6/5 while the other two models predict 
higher values. Also, the discrete PPM and Graessley's model approach the 
N-independent value of JeG(O) from below while the continuous PPM with the 
DDA approaches from above. The experimental value of  this product is indepen- 
dent of M and lies between 2 and 3 [20]. 

Table of predictions for J«G(O) as a function of N 

N Graessley PPM-discrete PPM-DDA 
(z = 3.5) (z = 3.5) (z = 3.0) 

I0 2.18 1.96 1.41 
30 2.33 2.13 1.28 

I00 2.37 2.32 1.22 
150 2.37 2.32 1.22 

4.  C o n c l u s i o n  

The parallel processes model for combined reptation and constraint release has 
been derived and solved numerically by finite differences starting at the orienta- 
tion correlation function level. The results presented here focus on the molecular 
weight dependence of the viscosity. In the continuum approximation the viscos- 
ity exponent is greater than 3 and depends on the molecular weight, a crossover 
to strict reptation is not observed and the magnitude of  the viscosity is underes- 
timated. The discrete solution, which is appropriate for experimentally accessible 
molecular weights, exhibits very different qualitative features. Surprisingly the 
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exponent is 3, just as in the RE case, the viscosity is overestimated and no 
crossover to strict reptation is observed in the region of molecular weight 
investigated. Inclusion of the constraint release mechanism merely lowers the 
viscosity prefactor, which is one of the weaknesses of the parallel processes 
model, since the stronger experimental molecular weight dependence will eventu- 
ally result in an underestimation of experimental results. The independent 
processes model is shown to be a good approximation to the parallel processes 
model for the viscosity; however this is not the case for the end-to-end vector 
correlation function. It is clear that linear combinations of reptation and 
constraint release, as modeled here, cannot describe the viscosity results observed 
experimentally and further refinement of the model is required. 
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Appendix 

The Orwoll-Stockmayer (OS) random bond flip mechanism was incorporated 
by Graessley to account for the change in chain configuration following the 
release of a constraint. This event is referred to as a local jump, and in the 
framework of the OS model it is assumed that the average number of properly 
positioned constraints per subunit, or tube segment, is z. The characteristic 
frequency for the CR process changes from that in Eq. (18) to: 

VcR = Œ(N) " e = 3Von2/N312A(z) (A1) 

where A(z )=  (1/z)(zc2/12) z, and Eqs. (21) and (22) change accordingly. Physi- 
cally, a greater z, which implies a higher Vcg, results in a greater contribution of 
the CR process for a given N. Comparison with experiment can be carried out, 
following Doi and Edwards, by using the Rouse relation r2(okB T = 144r/(M«)/ 
5G(0)N«, where tl(Me) is the viscosity at the critical molecular weight Me, 
N« = M«/M«, Me = 4cRT/5G(O), R is the universal gas constant, and z is the 
only parameter left to be determined. This parameter has been found experimen- 
tally to be approximately 3.5 [13]. The viscosity is finally given by: 

where 

and 

= (N/p)2G(O) [,[o~ F(z) dz (A2) 
" ~0( 3~2 1) 

2 \N312A(z) + 
do 

P 
F(z) = ~ S,;,(z) (A3) 

i = l  

4PTr2Si'i(z) (A4) 
S~.(z) = 15N ~~=, Si, i(0) 

which is the function calculated numerically. It should be noted that in the 
discrete case P is replaced by N. 



396 N .A.  Rotstein et al. 

References 

1. de Gennes PG (1971) J Chem Phys 55:572 
2. Doi M, Edwards SF (1978) J Chem Soc, Faraday Trans 2 74:1789, 1802, 1818 75:38 
3. Doi M, Edwards SF (1989) The theory of polymer dynamics. Oxford Univ Press, Oxford, UK 
4. Lodge TP, Rotstein NA, Prager S (1990) Adv Chem Phys 79:1 
5. Graessley WW (1982) Adv Polym Sci 47:68 
6. Yoshida H, Watanabe H, Kotaka T (1991) Macromolecules 24:572 
7. Struglinski M J, Graessley WW (1986) Macromolecules 18:2630 
8. Rubinstein M, Colby RH (1988) J Chem Phys 89:5291 
9. Green PF, Kramer EJ (1986) Macromolecules 19:1108 

10. Antonietti M, Coutandin J, Sillescu H (1986) 19:793 
11. Klein J (1978) Macromolecules 11:852 
12. Daoud M, de Gennes PG (1979) J Polym Sci, Polym Phys Ed 17:1971 
13. Watanabe H, Tirrell M (1989) Macromolecules 22:927 
14. Doi M (1983) J Polym Sci, Polym Phys Ed 21:667 
15. Graessley WW (1980) J Polym Sci, Polym Phys Ed 18:27 
16. Hildebrand FB (1968) Finite difference equations and simulations. Prentice-Hall, Englewood 

Cliffs, NJ 
17. McKenna GB, Hadziioannou G, Lutz P, Hild G, Strazielle C, Straupe C, Rempp P, Kovacs AJ 

(1987) Macromolecules 20:498 
18. Watanabe H (1991) personal communication 
19. Rouse PE (1953) J Chem Phys 21:1272 
20. Compliance data for PS are reported in: Odani H, Nemoto N, Kotaka M (1972) Bull Inst Chem 

Res Kyoto Univ 50:117 


